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Math or Mach?

"It’s relatively simple in its concept," said Griff Corpening, chief
engineer for the X-43A program. "It’s incredibly challenging in
its execution.... [That is] where all those days of research come
in."
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Abstract

One counts the number of occurrences of a given pattern H in
a text of size n. This number is denoted On(H).

Frequency analysis relies on the decomposition of the text T
onto languages, the so-called initial, minimal, and tail
languages.

Going from there to their generating functions both for a
Markovian and a Bernoulli environment, it turns out the whole
counting problem only depends on P (H) and the "correlation
set".
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Markov sequence

A sequence X1, X2, ... of random variates is called a Markov
sequence of order 1 iff, for any n,

F (Xn|Xn−1, Xn−2, ...X1) = F (Xn|Xn−1)

i.e., if the conditional distribution F of Xn, assuming
Xn−1, Xn−2, ...X1

equals

the conditional distribution F of Xn assuming only Xn−1.
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Markov chain

If a Markov sequence of random variates Xn take the discrete
values a1, ..., aN then

P (xn = ain|xn−1 = ain−1, ..., x1 = ai1) = P (xn = ain|xn−1 = ain−1)

and the sequence xn is called a Markov chain of order 1.
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Correlation of patterns

A correlation of two patterns X (size m) and Y is a string,
denoted by XY , over the set Ω = {0, 1}.

|XY | = |X|

Each position i can be computed as

i = 1⇔ place Y at Xi ∧ all overlapping pairs are identical

else i = 0
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Example of pattern correlation

Let Ω = {M,P}, X = MPMPPM and Y = MPPMP .
Then XY can be deduced in the following manner:

whilst Y X can be shown to equal 00010
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Representation of the correlation

Other representations of either string:

1. as a number in some base t. Thus, e.g. XY2 = 9

2. as a polynomial. Thus, e.g. XYt = t3 + 1
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Autocorrelation

Furthermore, autocorrelation of X can be defined as XX.

It represents the periods of X, i.e. those shifts of X that cause
that pattern to overlap itself.

Using Y = MPPMP from our previous example, Y Y
evaluates to 10010

Using A = MMM , AA evaluates to 111
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Autocorrelation set

Given a string H, the autocorrelation set AHH or just A is
defined as

AHH = {Hm
k+1 : Hk

1 = Hm
m−k+1}
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Example of an autocorrelation set

Let H = SOS
The autocorrelation reveals to be

HH = 101

whereas the autocorrelation set in that case is

A = {ε, 01}
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Let’s play a game

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively.

The player who chooses only one symbol (k times), has a
chance to win of at least 0.5

This is because of the "optimal" autocorrelation
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Sources
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Bernoulli

A Bernoulli Source, or memoryless source, generates text
randomly.

Every subsequent symbol (of a finite alphabet) is created
independently of its predecessors, and the probability of each
symbol is not necesserily the same.

If it is, the Source is called a symmetric, or unbiased Bernoulli
Source.

If text over an alphabet S is generated by a Bernoulli Source,
then each symbol s ∈ S always occurs with probability P (s).
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Markovian Source (1)

A Markovian Source generates symbols based not on the a
priori probability of each symbol.

Instead, it only heeds a (finite) set of predecessors to ascertain
the probability of each next symbol.

In order to do so, it requires a memory of previously emitted
symbols.
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Markovian Source (2)

Text generated by a Markovian Source is a realization of a
Markov sequence of order K.

K denotes the number of previous symbols that the probability
of the next symbol depends on.

In our application, this sequence will be stationary and K = 1,
i.e. a first-order Markov sequence.

When computing the next symbol, we only need to observe the
last symbol.
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Markovian Source (3)

In our case (K = 1), the transition matrix is defined by

P = {pi,j}i,j∈S

where

pi,j = Probability (tk+1 = j|tk = i)

The matrix entry (i, j) denotes the conditional probability of the
next symbol being j if the current symbol is i.
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Generating functions of languages
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What is a language, after all

A language L is a collection of words.

This collection must satisfy certain properties to belong to a
specific language.

Thus, we can associate with a language L its generating
function L(z).
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Generating functions

Given a sequence {an}n≥0, we know its generating function is
defined as

A(z) =
∑

n≥0

anz
n
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Generating functions, too

For sinister purposes, we represent it differently as

A(z) =
∑

α∈S

zw(α)

where S is a set of objects (words ...) and w(α) is a weight
function.

Henceforth we will interpret it as the size of α, i.e. w(α) = |α|

The equivalence becomes evident when we set an to be the
number of objects α satisfying w(α) = n.
Now we have a more combinatorial view
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Generating function of a language

Now, for any language L, we define its generating function
L(z) as

L(z) =
∑

w∈L

P (w)z|w|

where P (w) is the probability of word w’s occurence and |w| is
the length of w.

So the coefficient of z|w| is the sum of the probabilites all words
of that length.

In addition, we assume that P (ε) = 1. So every language
includes the empty word (as we know).
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Conditional generating function

In addition, the H-conditional generating function of L is given
as

LH(z) =
∑

w∈L

P (w|w−m = h1 . . . w−1 = hm)z|w|

=
∑

w∈L

P (w|w−1
−m = H)z|w|

where w−i is the symbol preceding the first character of w at

distance i.

We use this definition for Markovian sources, where the
probability depends on the previous symbols.
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Example: autocorrelation generating function

In our previous example, the autocorrelation set was

A = {ε, 01}

The generating function of the set is

A(z) = 1 +
z2

4

given a Bernoulli source, and

ASOS(z) = 1 + pSOpOSz
2

given a Markovian source of order one.
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Formulating our objective

We will now formulate the special generating functions whose
closed form we will later strive to compute:

1. T (r)(z) =
∑

n≥0 Pr(On(H) = r)zn

2. T (z, u) =
∑∞

r=1 T
(r)(z)ur

=
∑∞

r=1

∑∞
n=0 Pr(On(H) = r)znur
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Declaring languages
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Introduction

Let H be a given pattern.

n The initial language R is the set of words containing only
one occurrence of H, located at the right end.

n The tail language U is defined as the set of words u such
that Hu has exactly one occurrence of H, which occurs at
the left end.

n The minimal language M is the set of words w such that Hw
has exactly two occurrences of H, located at its left and
right ends.
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Component languages

We differentiate several special languages, given a pattern H.
"·" stands for concatenation of words.

1. R = {r : r ∈ T1 ∧H occurs at the right end ofr}

2. U = {u : H · u ∈ T1}

3. M = {w : H · w ∈ T2 ∧H occurs at the right end of H · w}
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Language relationships
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Qualities of Tr

At first, we will try to describe the languages T and Tr in terms
of R, M and U :

∀r ≥ 1 :

Tr = R ·Mr−1 · U
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Composition proof (Tr)

Proof: First occurance of H in a Tr word determines the prefix

p

which is in R.

From that prefix on, we look onward until the next occurance of
H.

The found word w is ∈M .

After r − 1 iterations, we add a H-devoid suffix, which is in U ,
because its prefix has H at the end.

¤
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Qualities of T

The "extended" version of Tr, its words including an arbitrary
number of H occurrences, can be composed similarily:

T = R ·M∗ · U

where M∗ :=
⋃∞

r=0 M
r
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Composition proof (T )

Proof:

A word belongs to T , if for some 1 ≤ r <∞ it belongs to Tr.

As
⋃∞

r=1 M
r−1 =

⋃∞
r=0 M

r = M∗, the assertion is proven.
¤
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Four more relationships

Analyzing the relationships between M, U and R further, we
introduce

1. W , the set of all words
2. S, the alphabet set
3. the operators "+" and "-", which denote disjoint union and

language subtraction
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Four more relationships I (1)

⋃

k≥1

Mk = W ·H + (A− {e})

Proof:

←:

Let k be the number how often H occurs in W ·H.

k ≥ 1.

The last occurrence of H in every included word is on the right.

That means, that W ·H ⊆
⋃

k≥1 M
k.
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Four more relationships I (2)

→:

Let w ∈
⋃

k≥1 M
k.

Iff |w| ≥ |H|, then surely the inclusion is correct.

Iff |w| < |H| (how can that be?), then w /∈W ·H.

But then, necessarily, w ∈ A− {ε}, because the second H in
Hw overlaps with the first H by definition (it is element of M k),
so w must be in the autocorrelation set A.

¤
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Four more relationships II

U · S = M + U − {e}

Proof:

All words of S consist of a single character s.

Given a word u ∈ U and concatenating them, we differentiate
two cases.

If Hus contains a second occurrence of H, it is clearly at the
right end. Then us ∈M .

If Hus does contain only a single H, then us must be
non-empty word of U .

¤



Preliminaries

Sources

GF of languages

Declaring languages

Language relationships
l Qualities of Tr
l Composition proof (Tr )
l Qualities of T
l Composition proof (T )
l Four more relationships
l Four more relationships I (1)
l Four more relationships I (2)
l Four more relationships II
l Four more relationships III
l Four more relationships IV
l One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Roland Aydin, April 2004 Analysis of Pattern Occurances – p. 39/102

Four more relationships III

H ·M = S ·R− (R−H)

Proof:
→:
Let sw be a word in H ·M , s ∈ S (we can write every such
word in this way WLOG).

sw contains exactly two times H, evidently at its left, and also
at its right end.
Thus, sw is also ∈ S ·R

←:
If a word swH from S ·R is not in R, then because it contains a
second H starting at the left end of sw, because wH ∈ R.
Of course, in that case it is ∈ H ·M .
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Four more relationships IV

T0 ·H = R ·A

Proof:

Let wH be ∈ T0 ·H. Then there can be either be one or more
occurences of H in wH, one of which is at the right end.

If there is no second one, then wH is ∈ R by definition of R

If, however, there is a second one, then it overlaps somehow
with the first one.

So we view the word until the end of the first H, which is in R.
Due to the overlapping, the remaining part is ∈ A.

¤
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One more

Combining relationships II and III yields

H · U · S −H · U = (S − ε)R

No proof is necessary, as we have validated both ingredients.

Using II, the left side is H(U · S − U) = H ·M

The right side is

S ·R−R

= S ·R− (R ∩ S ·R)

= S ·R− (R−H)

Together, that is just relationship III.
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Languages & Generating Functions
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In the Bernoulli env. (1)

We will now transcend from languages to their generating
functions.
Given any language L1, we know its generating function to be

A1(z) =
∑

w∈L1

P (w)z|w|
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In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)



Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs
l In the Bernoulli env. (1)
l In the Bernoulli env. (2)
l "Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

Roland Aydin, April 2004 Analysis of Pattern Occurances – p. 45/102

In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)

=
∑

w∈L3

P (w)z|w|
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In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)

=
∑

w∈L3

P (w)z|w|

=
∑

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|
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In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)

=
∑

w∈L3

P (w)z|w|

=
∑

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|

=
∑

w∈L1

P (w1)z
|w1|

∑

w∈L2

P (w2)z
|w2|



Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs
l In the Bernoulli env. (1)
l In the Bernoulli env. (2)
l "Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

Roland Aydin, April 2004 Analysis of Pattern Occurances – p. 48/102

In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)

=
∑

w∈L3

P (w)z|w|

=
∑

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|

=
∑

w∈L1

P (w1)z
|w1|

∑

w∈L2

P (w2)z
|w2|

= A1(z)A2(z)
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In the Bernoulli env. (2)

So what is the the result of multiplying two languages (i.e.
concatenating them) in respect to their gen. func.? What is
L3 = L1 · L2?

A3(z)

=
∑

w∈L3

P (w)z|w|

=
∑

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|

=
∑

w∈L1

P (w1)z
|w1|

∑

w∈L2

P (w2)z
|w2|

= A1(z)A2(z)

! The assumption P (wv) = P (w)P (v) only holds true with a

memoryless source.
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"Particularities"

A few particular cases:

n S (alphabet set)⇒ S(z) =
∑

s∈S P (s)z|s| = z
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"Particularities"

A few particular cases:

n S (alphabet set)⇒ S(z) =
∑

s∈S P (s)z|s| = z

n L = S · L1 ⇒ L(z) = zL1(z)
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"Particularities"

A few particular cases:

n S (alphabet set)⇒ S(z) =
∑

s∈S P (s)z|s| = z

n L = S · L1 ⇒ L(z) = zL1(z)

n {ε} ⇒ E(z) =
∑

w∈{ε} P (w)z|w| = 1 · 1 = 1
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"Particularities"

A few particular cases:

n S (alphabet set)⇒ S(z) =
∑

s∈S P (s)z|s| = z

n L = S · L1 ⇒ L(z) = zL1(z)

n {ε} ⇒ E(z) =
∑

w∈{ε} P (w)z|w| = 1 · 1 = 1

n H ⇒ H(z) =
∑

w=H P (H)z|H| = P (H)zm
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"Particularities"

A few particular cases:

n S (alphabet set)⇒ S(z) =
∑

s∈S P (s)z|s| = z

n L = S · L1 ⇒ L(z) = zL1(z)

n {ε} ⇒ E(z) =
∑

w∈{ε} P (w)z|w| = 1 · 1 = 1

n H ⇒ H(z) =
∑

w=H P (H)z|H| = P (H)zm

n W (behold, the set of all words)
⇒W (z) =

∑
P (w)z|k| =

∑
k≥0 z

k = 1
1−z
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Looking for Generating Functions
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Translating I

We will now attempt to translate our known language
relationships into generating functions:
In case I only, the formula we derive is correct just for a
memoryless source.

⋃

k≥1

Mk = W ·H + (A− {e})
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Translating I

We will now attempt to translate our known language
relationships into generating functions:
In case I only, the formula we derive is correct just for a
memoryless source.

⋃

k≥1

Mk = W ·H + (A− {e})

∞∑

k=1

MH(z)k = W (z) · P (H)zm +AH(z)− 1
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Translating I

We will now attempt to translate our known language
relationships into generating functions:
In case I only, the formula we derive is correct just for a
memoryless source.

⋃

k≥1

Mk = W ·H + (A− {e})

∞∑

k=1

MH(z)k = W (z) · P (H)zm +AH(z)− 1

∞∑

k=0

MH(z)k − 1 =
1

1− z
· P (H)zm +AH(z)− 1
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Translating I

We will now attempt to translate our known language
relationships into generating functions:
In case I only, the formula we derive is correct just for a
memoryless source.

⋃

k≥1

Mk = W ·H + (A− {e})

∞∑

k=1

MH(z)k = W (z) · P (H)zm +AH(z)− 1

∞∑

k=0

MH(z)k − 1 =
1

1− z
· P (H)zm +AH(z)− 1

1

1−MH(z)
=

1

1− z
· P (H)zm +AH(z)
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Translating II

U · S = M + U − {e}
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Translating II

U · S = M + U − {e}

U · S − U = M − {e}
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Translating II

U · S = M + U − {e}

U · S − U = M − {e}

UH(z)z − UH(z) = MH(z)− 1
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Translating II

U · S = M + U − {e}

U · S − U = M − {e}

UH(z)z − UH(z) = MH(z)− 1

UH(z)(z − 1) = MH(z)− 1
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Translating II

U · S = M + U − {e}

U · S − U = M − {e}

UH(z)z − UH(z) = MH(z)− 1

UH(z)(z − 1) = MH(z)− 1

UH(z) =
MH(z)− 1

(z − 1)
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Translating III

H ·M = S ·R− (R−H)
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Translating III

H ·M = S ·R− (R−H)

H ·M −H = S ·R−R
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Translating III

H ·M = S ·R− (R−H)

H ·M −H = S ·R−R

P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)
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Translating III

H ·M = S ·R− (R−H)

H ·M −H = S ·R−R

P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)

P (H)zm(MH(z)− 1) = R(z)(z − 1)
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Translating III

H ·M = S ·R− (R−H)

H ·M −H = S ·R−R

P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)

P (H)zm(MH(z)− 1) = R(z)(z − 1)

R(z) = P (H)zm
MH(z)− 1

z − 1
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Translating III

H ·M = S ·R− (R−H)

H ·M −H = S ·R−R

P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)

P (H)zm(MH(z)− 1) = R(z)(z − 1)

R(z) = P (H)zm
MH(z)− 1

z − 1

R(z) = P (H)zmUH(z)
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Main findings I
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T (r)(z)

We remember, that for r ≥ 1

Tr = R ·Mr−1 · U

We have now gleaned every component, and can translate it
(for r ≥ 1) into

T (r)(z) = R(z)M r−1(z)UH(z)
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T (z, u)

We do also remember, that

T = R ·M∗ · U

As T is the language with any number of Hs, its generating
function is indeed ...

T (z, u) = R(z)
u

1− uMH(z)
UH(z)
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On to other shores
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What is left to do?

We still have no formula of gathering On(H), i.e. the frequency
of H-occurrences (|H| = m) in random text of length n over an
alphabet S with |S| = V .

Let us make an educated guess, though.
What we do not know, is how important overlapping is.
Assuming to disregard that topic, the answer could be

E[On(H)] = P (H)(n−m+ 1)

It is.

But why?
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Using derivatives

Looking at our bivariate generating function of T ,

T (z, u) =

∞∑

r=1

∞∑

n=0

Pr(On(H) = r)znur

we notice that we would like the two sums to be reversed.
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Using derivatives

Looking at our bivariate generating function of T ,

T (z, u) =

∞∑

r=1

∞∑

n=0

Pr(On(H) = r)znur

we notice that we would like the two sums to be reversed.
Deriving it after u ...

Tu(z, u) =
∞∑

r=1

∞∑

n=0

Pr(On(H) = r)znr (=#Occ) ur−1
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Using derivatives

Looking at our bivariate generating function of T ,

T (z, u) =

∞∑

r=1

∞∑

n=0

Pr(On(H) = r)znur

we notice that we would like the two sums to be reversed.
Deriving it after u ...

Tu(z, u) =
∞∑

r=1

∞∑

n=0

Pr(On(H) = r)znr (=#Occ) ur−1

... and setting u to 1 leads to ...

Tu(z, 1) =

∞∑

n=0

(

∞∑

r=1

Pr(On(H)r)zn
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Proof Preparations

To shorten things, we introduce

DH(z) = (1− z)AH(z) + zmP (H)
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Proof Preparations

To shorten things, we introduce

DH(z) = (1− z)AH(z) + zmP (H)

and rewrite MH(z) as

MH(z) = 1 +
z − 1

DH(z)
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Proof Preparations

To shorten things, we introduce

DH(z) = (1− z)AH(z) + zmP (H)

and rewrite MH(z) as

MH(z) = 1 +
z − 1

DH(z)

as well as

UH(z) =
1

DH(z)
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Proof Preparations

To shorten things, we introduce

DH(z) = (1− z)AH(z) + zmP (H)

and rewrite MH(z) as

MH(z) = 1 +
z − 1

DH(z)

as well as

UH(z) =
1

DH(z)

and

R(z) = zmP (H)
1

DH(z)
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Deriving the closed form formula (1)

Tu(z, u)
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Deriving the closed form formula (1)

Tu(z, u)

= R(z)UH(z)
u

(1− uMH)

d

du
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Deriving the closed form formula (1)

Tu(z, u)

= R(z)UH(z)
u

(1− uMH)

d

du

= R(z)UH(z)
(1− uM) + uM

(1− uMH)2
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Deriving the closed form formula (1)

Tu(z, u)

= R(z)UH(z)
u

(1− uMH)

d

du

= R(z)UH(z)
(1− uM) + uM

(1− uMH)2

= R(z)UH(z)
1

(1− uMH)2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2

= R(z)
1

DH(z)

DH(z)2

(z − 1)2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2

= R(z)
1

DH(z)

DH(z)2

(z − 1)2

= zmP (H)
1

DH(z)

DH(z)

(z − 1)2
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Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1)

= R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2

= R(z)
1

DH(z)

DH(z)2

(z − 1)2

= zmP (H)
1

DH(z)

DH(z)

(z − 1)2

=
zmP (H)

(z − 1)2
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Main findings II

As the text has length n, we are extracting the nth coefficient of
Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)
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Main findings II

As the text has length n, we are extracting the nth coefficient of
Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)

= P (H)[zn]zm(1− z)−2
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Main findings II

As the text has length n, we are extracting the nth coefficient of
Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)

= P (H)[zn]zm(1− z)−2

= P (H)[zn−m](1− z)−2
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Main findings II

As the text has length n, we are extracting the nth coefficient of
Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)

= P (H)[zn]zm(1− z)−2

= P (H)[zn−m](1− z)−2

= (n−m+ 1)P (H)
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Epilogue
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Questions?

"O, call not me to justify the wrong
That thy unkindness lays upon my heart;

Wound me not with thine eye but with thy tongue;
Use power with power and slay me not by art.

What need’st thou wound with cunning when thy might
Is more than my o’er-press’d defense can bide?

That they elsewhere might dart their injuries:
Yet do not so; but since I am near slain,

Kill me outright with looks and rid my pain."
Shakespeare Sonnet CXXXIX
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With what certainty (1)

the variance of E(On(H) is, for a r > 1:

V ar[On(H)] = nc1 + c2 +O(r−n)

where

c1 = P (H)(2AH(1)− 1− (2m− 1)P (H) + 2P (H)E1))

c2 = P (H)((m− 1)(3m− 1)P (H)− (m− 1)

(2AH(1)− 1)− 2A′H(1))− 2(2m− 1)

(P (H)2E1 + 2E2P (H)2
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With what certainty (2)

where E1, E2 are

E1 =
1

πh1

[(P −Π)Z]hm,h1

E2 =
1

πh1

[(P 2 −Π)Z2]hm,h1
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Simplification

Luckily (...), for a memoryless source, both constants E are
void, as P is then equal to Π.
So in that, we have

c1 = P (H)(2A(1)− 1− (2m− 1)P (H)))

c2 = P (H)((m− 1)(3m− 1)P (H)− (m− 1)(2A(1)− 1)− 2A′(1))
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